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The paper presents a systematic method for analyzing the out-of-plane dynamic
behaviours of non-circular curved beams the governing equations of which take into
account the effects of shear deformation, rotary inertia, and viscous damping. The
procedure consists of formulating an analytical solution for the transformed governing
equations in the Laplace transform domain and computing the responses in the time
domain by means of numerical Laplace inversion. As key elements in the dynamic stiffness
method, the first known transformed dynamic stiffness matrix and equivalent nodal loading
vector for non-circular curved beams subjected to distributed external loading are
established from the analytical solution developed using the famous Frobenius method.
With a simple modification, the formulation of the solution is also suitable for free
vibration analysis, which results in an exact solution. As numerical examples for transient
analysis, time responses of displacement components and stress resultants are found for
a two-span elliptic beam subjected to a rectangular impulse. The behaviours of the
responses due to the variation of the ratio of the long axis to the short one are investigated.
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1. INTRODUCTION

As a very fundamental structural element in various structural systems, such as arch
bridges, curved bridges, roof structures, piping systems, and aerospace structures, the
dynamic behaviours of curved beams have been of interest to many researchers since the
nineteenth century. Much of the research work is summarized in review articles [1–4], in
which more than 600 articles have been reviewed. However, most of the literature has been
devoted to various vibration problems of circular curved beams.

Much less research has focused on the out-of-plane vibrations of non-circular curved
beams even though this type of curved beam is frequently found in practical situations.
The Ritz method with different types of trial functions has often been applied in
determining the natural frequencies of arches of various shapes [5, 6]. Chang and Volterra
[7, 8] applied the Lehman–Maehly method to determine the upper and lower bounds of
natural frequencies of curved beams. By combining the discrete Green function and a
numerical integral technique, Kawakami et al. [9] developed an approximate solution for
the in-plane and out-of-plane free vibrations of curved beams. With regard to analytical
solutions, Suzuki and co-workers [10–12] developed a series solution in terms of

0022–460X/98/330407+18 $30.00/0 7 1998 Academic Press



. .   .408

polynomials, in which the solutions for symmetric modes and anti-symmetric modes were
considered separately while Irie et al. [13] and Huang et al. [14] used the transfer matrix
method and the dynamic stiffness method, respectively.

Very few studies on the dynamic responses of a system consisting of non-circular curved
beams have been reported in the literature. Irie et al. [15] used a transfer matrix approach
to study the steady state responses of curved Timoshenko beams with internal hysteresis
damping. Suzuki et al. [16] applied the modal superposition method to investigate the
dynamic behaviours of a semi-elliptic arch subjected to a concentrated impulse without
considering the effects of shear deformation and rotary inertia. It is well-known that many
modes are needed to obtain accurate results for the responses of stress resultants and to
accurately describe the concentrated impulse. Consequently, the modal superposition
method may not be a good choice because of the complexity of determining natural
frequencies and the corresponding mode shapes from the series solution developed by
Suzuki et al. [10–12]. Apparently, investigation into the transient responses of plane curved
beams has been insufficient.

In the present work, a methodology recently developed for analyzing the in-plane
dynamic responses of arches [17] is extended to solve the out-of-plane ones. The procedure
consists of formulating an exact solution for the transformed governing equations in the
Laplace transform domain and computing the responses in the time domain using
numerical Laplace inversion. Beskos and his co-workers [18–20] used a similar
methodology to analyze the dynamic responses of a system consisting of straight members
only. However, the out-of-plane dynamic responses of curved beams have not been
analyzed using this procedure because two key elements have not yet been established,
which are the dynamic stiffness matrix and the equivalent nodal loading vector for
non-circular curved beams subjected to distributed external loading. Consequently, the
main purpose of this paper is not only to present a systematic procedure for analyzing the
out-of-plane dynamic behaviours of a system composed of non-circular curved beams, but
also to formulate such dynamic stiffness matrix and equivalent nodal loading vector for
a curved element. The latter is accomplished by using the well-known Frobenius method
[21] to construct the analytical solution in the Laplace domain.

As numerical examples for transient analysis, the dynamic behaviours of two-span
elliptic arches subjected to a rectangular impulse at the midpoint of the second span are
investigated. The time responses of the displacement components (displacement, bending
rotation angle, and twist angle) and the stress resultants (shear force, bending moment,
and twisting moment) at the load point will be given to show the accuracy of the results.
The behaviours of the responses due to the vibration of the ratio of the long axis to the
short axis (a/b) will be discussed.

There are several important advantages to the proposed solution. It provides highly
accurate dynamic responses not only for displacement components, but also for stress
resultants, which are functions of the higher derivatives of the displacement, without any
numerical difficulties. Because the analytical solution for a curved element is expressed in
terms of a dynamic stiffness matrix, it is easy to combine this analytical solution with the
dynamic stiffness matrices of other types of members to analyze the dynamic responses
of a more complex system, such as an arch bridge or a space frame. The computer time
needed for the present procedure to analyze a complex system can be much less than that
needed by the conventional finite-element method with step-by-step time integration
schemes, which was addressed by Beskos and Narayanan [20]. Compared with the
traditional modal superposition method, the present method does not require knowledge
of natural frequencies and modal shapes. Furthermore, when the dynamic responses of a
system subjected to support motions are considered, a quasi-static solution [22] is required
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in the modal superposition method, while the present method does not have this
requirement.

2. GOVERNING EQUATIONS

A planar curved beam defined by its arc length S is shown in Figure 1, in which R
represents the radius of the centroidal axis. Figure 1 also shows the stress resultants on
the cross-section, namely, the bending moment (Mz ), shear force (Q), and twisting moment
(Mt ), whose positive directions are given in the figure. The out-of-plane displacement of
the centroidal axis is denoted by u while z and f represent the bending rotation and the
twist angle of the centroidal axis, respectively. By neglecting the warping deformation of
the cross-section and considering the viscous damping effect, the well-known equations of
motions for out-of-plane can be written as (cf. reference [4]):

1Q
1S

= rAü+Cuu̇−Pp , (1a)

−
1Mz

1S
+

Mt

R
+Q= rIzz� +Czz� , (1b)

1Mt

1S
+

Mz

R
= rJf� +Cff� , (1c)

where A and J, respectively, are the area and polar moment of the cross-section, r is the
mass per unit volume, Iz is the second moment of the area of the cross-section about the
Z-axis, and Pp is the distributed load. The viscous damping coefficients are set to be
Cu = rAdu , Cz = rIzdz , and Cf = rJdf . The derivative with respect to time is denoted by
a dot.

Based on the assumption of a linearly elastic material, the stress resultants are related
to the displacement components by

Q= kGA01u
1S

− z1, (2a)

Mz =−EIz01z

1S
+

f

R1, (2b)

Figure 1. Curved beam co-ordinates and stress resultants for out-of-plane motion.
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Figure 2. Configuration of an elliptic beam.

Mt =C01f

1S
−

z

R1, (2c)

where E and G are the Young’s modulus and shear modulus, respectively, while k and C
are the shear coefficient and torsional stiffness coefficient of the cross-ection, respectively.
The shear coefficient and torsional stiffness coefficient are dependent on the shape of the
cross-section. The shear coefficient is used to take into account the variation of the shear
deformation through the cross-section and is set equal to 0·85 for a rectangular
cross-section and 0·89 for a circular cross-section for a beam with a Poisson’s ratio of
n=0·3 [23]. The torsional stiffness coefficient is used to take into account, to some extent,
the effect of the warping deformation of the cross-section and is set equal to GJ for a
circular cross-section while for rectangular cross-section (cf. reference [24]),

C=
1
3

GB3H01−
192
p5

B
H

s
n=1,3,5

1
n5 tanh

npH
2B 1, (3)

where B and H are the width and the height of the cross-section, respectively. The
summation in equation (3) converges very rapidly so that only the first term (n=1) is used.

Substituting equations (2) into equations (1), assuming uniform cross-section and
constant material properties through the curved beam, and performing transformation of
co-ordinate S into u shown in Figure 2 yields

ū0+ ū'
j'
j

−
1
j

z'=
rL2

El2
1j

2 (u� + duu� )−
L

EAl2
1j

2 Pp , (4a)

z0+
j'
j

z'−0 l2
2

r̄2j2 +
l2

1

R� 2j21z+01+ l2
2

R�j 1f'−
R� '
R� 2j

f+
l2

1

r̄2j
ū'=

rL2

Ej2 (z� + dzz� ), (4b)

f0+
j'
j

f'−
1

l2
2R� 2j2 f−01+

1
l2

21z'+ R�
R� 2j

z=
rJL2

j2C
(f� + dff� ), (4c)

where the primes denote the derivatives with respect to u. In addition, the following
non-dimensional quantities are introduced:

ū= u/L, R� =R/L, j=L(du/dS), l2
1 = kG/E, l2

2 =C/(EIz ),

ḡ2 = g2/L2 = Iz /(L2A), (5)
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where L is a representative length of the curved beam under consideration. Equations (4)
are the governing equations for the out-of-plane motion of the non-circular curved beams.
It should be noted that in some cases, such as when considering parabolic beams, the
formulation of the solution will be simpler using Cartesian co-ordinates.

3. TRANSFORMED SERIES SOLUTION

To perform general dynamic analysis of a curved beam, the time domain is transformed
into the Laplace domain. The main reason for using the Laplace transformation technique
is not only that this technique was originally developed to solve initial value problems, but
also that it is suitable for solving viscoelasticity problems due to the validity of the
correspondence principle. Consequently, by assuming zero initial conditions, equations (4)
become

U	 0+U	 '
j'
j

−
1
j

Z	 '=
rL2

El2
1j

2 (s2 + sdu )U	 −
L

EAl2
1j

2 P	 p , (6a)

Z	 0+
j'
j

Z	 '−0 l2
2

R� 2j2 +
l2

1

r̄2j21Z	 +01+ l2
2

R�j 1F	 '− R� '
R� 2j

F	 +
l2

1

r̄2j
U	 '=

rL2

Ej2 (s2 + sdz )Z	 , (6b)

F	 0+
j'
j

F	 '−
1

l2
2R� 2j2 F	 −01+

1
l2

21 1
R�j

Z	 '+
R� '
R� 2j

Z	 =
rJL2

j2C
(s2 + sdf )F	 , (6c)

where (U	 , Z	 , F	 , P	 p )= fa
0 (ū, z, f, Pp) e−st dt and s is a complex number. Equations (6) are

a set of second order ordinary differential equations for U	 , Z	 and F	 with variable
coefficients depending on u only, which can be solved exactly using the well-known
Frobenius method [21].

For convenience, the Taylor’s expansion series of the variable coefficients and the
external load function in equations (6) about a convenient position, say h, can be expressed
as

j'
j

= s
K

k=0

ak (h− h)k,
1
j

= s
K

k=0

bk (u− h)k,
R� '
R� 2j

= s
K

k=0

dk (u− h)k,

1
R�j

= s
K

k=0

ek (u− h)k,
1

R� 2j2 = s
K

k=0

fk (u− h)k,
P	 p

j2 = s
K

k=0

pk (u− h)k. (7)

Hence, for the given geometry of a curved beam and external loading function, the
coefficients ak , bk , ck , dk , ek , fk and pk can be determined with the aid of commercial
symbolic logic computer software packages like ‘‘Mathematica’’ or ‘‘MACSYMA’’. Using
the Frobenius method, the solution to equations (6) are expressed in terms of polynomials
as

U	 = s
J

j=0

Aj (u− h)j, Z	 = s
J

j=0

Bj (u− h)j and F	 = s
J

j=0

Dj (u− h)j, (8)

where coefficients Aj , Bj and Dj are functions of the Laplace transform parameter s.
Theoretically, J in equation (8) should approach infinity if an exact solution is to be
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obtained. Nevertheless, to obtain very accurate numerical results, only a sufficiently large
number of terms in equation (8) is needed.

By substituting equations (7) and (8) into equations (6) and carefully collecting the terms
which have the same order of polynomials, one can obtain the following recursive formulas
for the relationships among the coefficients in equation (8):

Aj+2 =
−1

( j+1)( j+2) 6 s
j

k=0 $(k+1)aj− kAk+1 − (k+1)bj− kBk+1

−
rL2

El2
1
(s2 + dus)cj− kAk%+

L
EAl2

1
pj7, (9a)

Bj+2 =
−1

( j+1)( j+2)
s
j

k=0 $l
2
1

ḡ2 (k+1)cj− kAk+1 + (k+1)aj− kBk+1

+ (k+1)(1+ l2
2 ) ej− k Dk+1 −00rL2(s2 + dzs)

E
+

l2
1

ḡ21cj− k + l2
2 fj− k1Bk − dj− kDk%,

(9b)

Dj+2 =−
1

(j+1)(j+2)
s
j

k=0 $−(k+1)01+
1
l2

21 ej− k Bk+1 + (k+1)aj− kDk+1

+ dj− kBk −0rJL2

C
(s2 + dfs)cj− k +

fj− k

l2
2 1Dk%, (9c)

where j=0, 1, 2, . . . . From equations (9), coefficients Aj+2, Bj+2, and Dj+2 for je 0 can
be determined if A0, A1, B0, B1, D0 and D1 are known. Consequently, the solution to
equations (6) can be reduced to the following simple expression:

U	 (u)=A0ũ0(u)+A1ũ1(u)+B0ũ2(u)+B1ũ3(u)+D0ũ4(u)+D1ũ5(u)+ ũp (u), (10a)

Z	 (u)=A0z	 0(u)+A1z	 1(u)+B0z	 2(u)+B1z	 3(u)+D0z	 4(u)+D1z	 5(u)+ z	 p (u), (10b)

F	 (u)=A0f	 0(u)+A1f	 1(u)+B0f	 2(u)+B1f	 3(u)+D0f	 4(u)+D1f	 5(u)+f	 p (u), (10c)

where ũj , z	 j and f	 j (j=0, 1, 2, . . . , 5) are a set of homogeneous solutions to equations (6),
which are polynomial functions of u with coefficients determined from equations (9).
Polynomial functions ũp , z	 p and f	 p are a set of particular solutions to equations (6).

4. TRANSFORMED DYNAMIC STIFFNESS MATRIX AND LOADING VECTOR

To analyze a single span curved beam, one may want to solve the beam by treating the
whole curved beam as an element and determine coefficients A0, A1, B0, B1, D0 and D1 from
the boundary conditions. Instead, however, we will introduce the concept of the dynamic
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stiffness method and decompose a curved beam into several elements, an approach which
has several advantages over treating the whole beam as one element. One advantage is that
highly accurate solutions can always be obtained by increasing the number of elements
or by increasing the values of K and J in equations (7) and (8), respectively. Consequently,
the numerical difficulties caused by using very large numbers for K and J as reported by
Suzuki and Takahashi [12] can be easily avoided. In addition, one can save time and
trouble in finding the higher order terms in the Taylor’s expansion series for the complex
geometric terms and loading term given in equation (7). Furthermore, the convergence of
the series solution given by equation (8) can be guaranteed by decomposing a curved beam
into more elements as long as its convergence radius is not equal to zero.

When a curved beam is decomposed into a number of elements, directly from equations
(10), the end displacements for each element (see Figure 3) in the Laplace domain can be
expressed as

U
 0 A0 ûp (un )

Z	 0 A1 z	 p (un )

F	 0 B0 f	 p (un )g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

U
 1
= [b]n B1

+
ûp (un+1)

, (11a)

Z	 1 D0 z	 p (un+1)

F	 1 n D1 n f	 p (un+1) n

Figure 3. Positive displacement and stress resultants for the nth element.
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where

û0(un ) û1(un ) û2(un ) û3(un ) û4(un ) û5(un )

z	 0(un ) z	 1(un ) z	 2(un ) z	 3(un ) z	 4(un ) z	 5(un )

f	 0(un ) f	 1(un ) f	 2(un ) f	 3(un ) f	 4(un ) f	 5(un )
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

[b]n = û0(un+1) û1(un+1) û2(un+1) û3(un+1) û4(un+1) û5(un+1)
.

z	 0(un+1) z	 1(un+1) z	 2(un+1) z	 3(un+1) z	 4(un+1) z	 5(un+1)

f	 0(un+1) f	 1(un+1) f	 2(un+1) f	 3(un+1) f	 4(un+1) f	 5(un+1) n

(11b)

The real displacement instead of the non-dimensional displacement is used in equation
(11a). Therefore, U
 0 =LU	 (un ), U
 1 =LU	 (un+1), ûp (u)=Lũp (u) and ûi (u)=Lũi (u), where
i=0, 1, 2, . . . , 5 in equations (11). The subscript n for the vectors and matrices represents
the relations for the nth element. (U
 0 Z	 0 F	 0 U
 1 Z	 1 F	 1)T

n is the vector of the end
displacements for the nth element, whose sign convection is shown in Figure 3. For the
nth element, h in equations (7) and (8) is set equal to (un + un+1)/2.

From equations (2) and (11a), the end stress resultants for the nth element can be
expressed in terms of the end displacements as

Q	 0 U
 0

M	 z0 Z	 0

M	 t0 f	 0g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

Q	 1
= [k	 ]n U
 1

+{f	 p}n , (12)

M	 z1 Z	 1

M	 t1 n F	 1 n

where

[k]n =(EA)n ([a1]n +[a2]n)[b]−1
n , (13a)

F J

ûp (un )

−l2
1$j(u)nû'p (un )

L
− z	 p (un )%G G

G G
G G

z	 p (un )

g2

LR�(un )
[R� (un )j(un)z'p (un )+f	 p(un )]G G

G G
f	 p (un )

−
l2

2g
2

LR�(un )
[R�(un )z (un )f	 p(un )− z	 p (un )]j fg

G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

J

j

J F{f	 p}n =−[K	 ]n
ûp (un+1)

+ (EA)n

l2
1$j(un+1)ux 'p (un+1)

L
− z	 p (un+1)%

,

G G
G G
G G

z	 p (un+1)

−
g2

LR�(un+1)
[R�(un+1)z(un+1)z	 'p (un+1)+f	 p(un+1)]G G

G G

f	 p (un+1) n

l2
2g

2

LR�(un+1)
[R�(un+1)z(un+1)f	 'p (un+1)− z	 p(un+1)]f j

(13b)
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û'0 (un ) û'1 (un ) û'2 (un ) û'3 (un ) û'4 (un ) û'5 (un )

z	 '0 (un ) z	 '1 (un ) z	 '2 (un ) z	 '3 (un ) z	 '4 (un ) z	 '5 (un )

f	 '0 (un ) f	 '1 (un ) f	 '2 (un ) f	 '3 (un ) f	 '4 (un ) f	 '5 (un )G
G

G

G

G

K

k

G
G

G

G

G

L

l

[a1]n =[L1]n û'0 (un+1) ũ'1 (un+1) û'2 (un+1) û'3 (un+1) û'4 (un+1) û'5 (un+1)
,

z	 '0 (un+1 z	 '1 (un+1) z	 '2 (un+1) z	 '3 (un+1) z	 '4 (un+1) z	 '5 (un+1)

f	 '0 (un+1) f	 '1 (un+1) f	 '2 (un+1) f	 '3 (un+1) f	 '4 (un+1) f	 '5 (un+1) n

(13c)

z	 0(un ) z	 1(un ) z	 2(un ) z	 3(un ) z	 4(un ) z	 5(un )

f	 0(un ) f	 1(un ) f	 2(un ) f	 3(un ) f	 4(un ) f	 5(un )

z	 0(un ) z	 1(un ) z	 2(un ) z	 3(un ) z	 4(un ) z	 5(un )G
G

G

G

G

K

k

G
G

G

G

G

L

l

[a2]n =[L2]n
z	 0(un+1) z	 1(un+1) z	 2(un+1) z	 3(un+1) z	 4(un+1) z	 5(un+1)

,

f	 0(un+1) f	 1(un+1) f	 2(un+1) f	 3(un+1) f	 4(un+1) f	 5(un+1)

z	 0(un+1) z	 1(un+1) z	 2(un+1) z	 3(un+1) z	 4(un+1) z	 5(un+1) n

(13d)

and [Li ]n (i=1, 2) are diagonal matrices. The diagonal vector of [L1]n is {−l2
1 /j(un ),

ḡ2Lj(un ), −l2
2 ḡ

2Lj(un ), l2
1j(un+1), −ḡ2Lj(un+1), l2

2 ḡ
2Lj(un+1)} while the diagonal vector of

[L2]n is {l2
1L, ḡ2L2/R(un ), l2

2 ḡ
2L2/R(un ), −l2

1L, −ḡ2L2/R(un+1), −l2
2 ḡ

2L2/R(un+1)}. [k	 ]n is the
so-called local dynamic stiffness matrix of the nth element, and {f	 p}n is the equivalent nodal
external loading for the nth element. The sign convention for the nodal stress resultants
is also shown in Figure 3.

Using the continuity conditions between adjacent elements, namely, the continuity in
the displacement, rotation, and stress resultants, the global dynamic stiffness matrix, [K	 ],
of the system can be obtained by superposing the local dynamic stiffness matrices of all
the elements. Consequently, one can obtain the following relations:

[K	 ]{U	 }= {F	 }, (14)

where {U	 } is the end displacement vector for the curved beam system under consideration
while {F} is the equivalent external loading vector applied at the ends of each element.

By substituting boundary conditions into equation (14), one can solve precisely the
unknown end displacement vector from equation (14) using any conventional linear solver.
Then, in the Laplace domain, the displacement components and stress resultants at any
desired locations can be computed after the series solution for each element is determined
from equations (10) and (11).

To analyze the free vibration of curved beams with variable curvature, one can leave
off the damping forces and external loading in equations (6) and replace the Laplace
transform parameter s with iv. Consequently, equation (14) can be reduced to

$[K	 uu ] [K	 ub ]
[K	 bu ] [K	 bb ]%6{U	 u}

{U	 b}7=6 {0}
{F	 b}7, (15)

where {U	 u} is the vector corresponding to the unknown end vibratory displacement
components, {U	 b} is the vector of the prescribed vibratory displacement components on
the boundaries, and {F	 b} is the vector of unknown vibratory stress resultants on the
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displacement prescribed boundaries. In free vibration problems, {U	 b} is usually a zero
vector. Then, equation (15) reduces to

[K	 uu ]{U	 u}= {0}, (16)

from which one can find the eigenvalues and the corresponding eigenvectors. The natural
frequencies are the value of v resulting in the determinant of [K	 uu ] equal to zero.

5. NUMERICAL LAPLACE INVERSION

After obtaining exactly the responses of the displacement components and stress
resultants at the locations of interest in the Laplace domain, these results have to be
transformed back into the time domain to complete the analysis. The algorithm developed
by Durbin [25] is adopted to find the inverse Laplace transforms.

The inverse of the Laplace transform of a function is defined as

f(t)=
1

2pi g
ā+ia

ā−ia

estf	 (s) ds, (17)

where āq 0 is arbitrary but is greater than the real parts of all the singularities of f	 (s).
Following Durbin’s technique,

f(tj )1 (2 eiāDt/tmax )6−(1/2) Re [ f	 (ā)]+Re $ s
Nt −1

n=0

(F(n)+ iG(n))Wjn%7, (18)

where

F(n)= s
M

m=0

Re [ f	 (ā+i(n+mNt )2p/tmax )], G(n)= s
M

m=0

Im [ f	 (ā+i(n+mNt )2p/tmax )],

and W=ei2p/Nt, tmax is the time interval of interest for the problem under consideration, and
Dt= tmax /Nt . The computations involved in equation (18) can be accelerated by employing
the fast Fourier transform algorithm. The accuracy of Durbin’s algorithm is generally
dependent on the values of MNt (the product of M and Nt ), tmax and ā. Generally speaking,
the numerical error decreases for increasing values of ātmax and MNt . The typical values
for these parameters, as suggested by Durbin, are MNt =50 to 5000 and ātmax =5 to 10.

6. NUMERICAL EXAMPLES

As numerical examples, the responses of two-span continuous elliptic beams with
a/b=2, 3, and 4 subjected to a rectangular impulse at u=67·5° (see Figure 4) will be
investigated. In the following, the characteristic length of the curved beam in the
formulation, L, is set equal to 2a. The impulse is defined as

Pp (t)=EAḡ[U(t−0·1)−U(t−0·12)], (19)

where U(t) is a unit step function. Hence, the rectangular impulse starts from t=0·1 s and
ends at t=0·12 s. The boundary conditions are prescribed as u=f=Mz =0 at u=0°
(hinged support), u=0 at u=45° and u=Mt =Mz =0 at u=90° (roller support). The
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Figure 4. A sketch of a two-span elliptic beam.

properties of the curved beams with square cross-sections are specified as:
zE/r=5000 m/s, Poisson ratio (n)=0·3, a=30 m, and 1/ḡ=70. Furthermore, the
damping effects are neglected.

Table 1 lists the first five natural frequencies for the elliptic beams under consideration,
which were obtained by decomposing the curved beam into 12 elements and using 15
geometric terms and 20 solution terms for each element. The details of the free vibration
analysis have been given by Huang et al. [14]. It is believed that the listed results are
convergent to at least five significant figures. The results show that the frequency decreases
with a decrease of a/b for each mode.

Figures 5 and 6 show the responses for the case where a/b=3, in which the responses
are expressed in terms of the non-dimensional quantities defined as ū= u/L,
Q*=Q/(kGA), M*z =MzL/(EI), and M*t =MtL/C. Careful examination of the
responses of non-dimensional shear forces at u=67·499° and 67·501°, as shown in
Figure 5, reveals that the sum of these responses in terms of the real shear forces almost
exactly matches the input rectangular impulse at u=67·5°. This coincidence somewhat
demonstrates the accuracy of the results obtained using the proposed procedure.
Investigation of the responses at the load point (u=67·5°), as shown in Figure 6, reveals
that the responses of the stress resultants have higher frequency components than do those

T 1

Natural frequencies (rad/s) for two-span elliptic beams

a/b
ZXXXXXXXXCXXXXXXXXV

Mode 2 3 4

1 88·3783 96·2593 100·603
2 150·895 164·910 166·772
3 259·200 303·416 325·097
4 350·180 371·402 385·364
5 409·024 474·661 505·543
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Figure 5. Variation of Q*: (a) at u=67·499° and (b) u=67·501°.

for the displacement components as expected. The results in these figures show no Gibb’s
phenomenon.

Figure 7 shows the maximum dynamic non-dimensional responses along the two-span
curved beam normalized by the maximum static non-dimensional responses caused by a
static loading at u=67·5° with the same amplitude as the impulse. The results somewhat
show the dynamic effects of the impulse on the responses of the elliptic beam with different
ratios of a/b. When a/b varies from 2 to 4, the maximum values of ūd,max /ūs,max , zd,max /zs,max ,
and fd,max /fs,max , respectively, occur around u=20°, 90° and 75°, while the maximum
values of Q*d,max /Q*s,max and M*zd,max /M*zs,max occur at the middle support. The maximum value
of M*td,max /M*ts,max occurs at the left-hand support for a/b=3 and 4 while it occurs around
u=53° for a/b=2. Careful investigation of the responses of Q*d,max /Q*s,max reveals that a
jump occurs at u=45°, which results from the reaction force at the middle support. The
dynamic effects of the impulse on the responses of the curved beams obviously depend
on the geometry of the curved beam and the location of the response as well as on the
physical quantity of the response to be considered. As a matter of fact, the effects of
impulse are also dependent on the duration and the position of the applied impulse, which
were given in Chang’s thesis [26].
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Figure 6(a)—(Caption on next page).

7. CONCLUDING REMARKS

This paper has presented a systematic procedure for analyzing the out-of-plane dynamic
behaviours of curved beams with variable curvature. The solution has been developed by
combining the Laplace transformation with the dynamic stiffness method, in which the
first known transformed dynamic stiffness matrix and the equivalent nodal loading vector
for non-circular curve beams subjected to distributed loading are formulated based on a
series solution obtained using the Frobenius method. Since an analytical solution in the
Laplace domain is used to compute the stress resultants at any location of interest, the
obtained responses of the stress resultants in the time domain are highly accurate, which
is not easy to accomplish using other methods. The free vibration analysis can be
performed by means of a simple modification in the formulation presented, which results
in an exact soution.

Application of the proposed solution to transient analysis has been carried out to
investigate the dynamic behaviours of two-span elliptic curved beams with a/b=2, 3
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Figure 6. (a) Variation of the displacement components at u=67·5°. (b) Variation of M*z and M*t at u=67·5°.

and 4, subjected to a rectangular impulse at the middle of the second span. The time
responses of the displacement components and stress resultants at the load point have been
shown to demonstrate the high degree of accuracy of the proposed solution. Generally
speaking, the maximum values for the ratios of the maximum dynamic responses to the
maximum static responses vary from 1·5 to 3·0, depending on the physical quantities under
consideration and a/b. Furthermore, the ratios also significantly depend on the duration
of the impulse, the locations of the applied impulse and the responses considered.

The proposed solution can be applied to solve more complicated problems, such as the
transient responses of frameworks and arch bridges composed of curved elements, by
combining it with the dynamic stiffness matrices of other types of elements. Furthermore,
based on the correspondence principle, the present solution is also suitable for
viscoelasticity problems, which become more common when viscoelastic materials are used
in passive control systems to reduce the dynamic responses of structures. Finally, with a
simple modification, the solution given in the paper can be applied in a straightforward
manner to analysis of the stochastic responses of curved beams [27].
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Figure 7(a–c)—(Caption on next page).
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Figure 7(d–f ).

Figure 7. The ratios of the maximum dynamic responses to the maximum static responses. ——, a/b=2; ---,
a/b=3; –––, a/b=4.
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